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A hollow vortex in the form of a straight tube, parallel to the z-axis, and of radius
a, moves in a uniform stream of fluid with velocity U in the x-direction, with U
small compared with the sound speed c. This steady flow is disturbed by the presence
of a thin symmetric fixed aerofoil. With a change of x-coordinate, the problem is
equivalent to that of a moving aerofoil cutting through an initially fixed vortex in
still fluid. The aim of this work is to determine the resulting perturbed flow, and
to estimate the distant sound field. A detailed calculation is given for the perturbed
velocity potential in the incompressible flow case, for the linearized equations in the
limit of small aerofoil thickness. A formally exact solution involves a four-fold integral
and an infinite sum over all mode numbers. For the important special case where
the vortex tube has small radius a compared with the aerofoil width, the deformed
vortex is characterized by a hypothetical vortex filament located at the ‘mean centre’
x̄(z, t), ȳ(z, t) of the tube. Explicit results are given for x̄(z, t), ȳ(z, t) for the case where
the aerofoil has the elementary rectangular profile; results can then be obtained for
more general and realistic cylindrical aerofoils by a single integral weighted with
the derivative of the aerofoil thickness function. Finally the distant sound field is
estimated, representing the aerofoil by a distribution of moving monopole sources
and representing the effect of the deformed vortex in terms of compressible dipoles
along the mean centre of the vortex.

1. Introduction
Many problems in hydro- and aero-dynamics involve the interaction between

surfaces and regions of vorticity. Cavitated vortex tubes shed from the tip of an
underwater propellor will interact with the local flow and with the moving vessel.
Another important application, which is borne mainly in mind in this work, is that
of the external noise from helicopters, arising from an interaction of vortex tubes and
rotors. The flow around lifting (aerofoil) surfaces generates vortex sheets, shed by the
action of viscosity at the trailing edges. These unstable sheets roll up to form thin
vortex tubes: see, for example, Moore (1974), Moore & Saffman (1973). The fluid
velocity is relatively large near a vortex core, so interactions with following rotors
lead to unsteady flows and can induce significant sound fields.

There are several mechanisms which can contribute to the generation of sound in
this context, and many authors have studied various aspects of the problem. The
review articles by Janakiram (1990) and Schmitz & Yu (1986) discuss several general
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aspects and provide many useful references. The fundamental papers of Lighthill
(1952), Curle (1955) and Ffowcs Williams & Hawkings (1969) provide generally
valid identities for sound fields in terms of local flow variables such as the force
distribution on fixed or moving bodies in the flow field. The influence of vorticity has
been described explicitly by Howe (1975), Mőhring (1978) and Powell (1964, 1995) for
example. Ffowcs Williams & O’Shea (1970) analysed the sound field due to a hollow
vortex that is disturbed by an oscillatory point source; Sozou (1990) has considered
the resonant interaction of a plane sound wave with a Rankine vortex.

There are several papers that deal specifically with problems on the interaction of
moving vortices with aerofoils. Howe (1991) provides estimates for the generation
of sound in fluid–structure problems with particular reference to a vortex interacting
with a shrouded rotor in a duct. Hawkings (1978) has proposed a mechanism for the
radiation of sound due to the unsteady drag on an aerofoil. The method of matched
asymptotic expansions was used by Kambe (1986) to analyse the sound generated
by vortex motion in the presence of solid or sharp bodies. The problem of sound
produced by gusts passing an aerofoil has been addressed by Amiet (1986a) and
this approach has been extended considerably by the same author and collaborators
in later works. The effects of axial flow down the vortex core are important; the
generation of sound from a steady axial flow, cut by a supersonically moving aerofoil,
has been analysed by Ffowcs Williams & Guo (1988).

The present work concerns an idealization of the basic problem of a vortex
that convects past a single aerofoil A. A straight or nearly straight vortex has
quite different characteristics according to whether it is nearly parallel with, or
perpendicular to, the axis of the aerofoil. This paper is confined to the latter
possibility, which is most relevant to the interaction of a vortex that is shed from the
main rotor before being cut by one of the tail rotors.

The elementary line vortex model is useful in some contexts although it is unrealistic
in having unbounded velocity (therefore unbounded negative pressure) near its axis.
The model is not appropriate for our task of dealing with deformations of a vortex
when it crosses an aerofoil, and a finite core radius is essential. The azimuthal velocity
profile inside a real vortex core is complicated. In the most elementary model, to be
investigated in detail here, the interior is replaced by a cylindrical cavity of negligible
density and its surface is represented by a condition of constant pressure. This
corresponds to the interior vapour pressure in the underwater case. This ‘hollow
vortex’ model is perhaps less realistic in the aerodynamical context, but it has the
advantage of being amenable to analytical treatment and is taken as a first step.

Suppose that such a hollow vortex tube, given in Cartesian coordinates by x2 +y2 <
a2,−∞ < z < ∞, and with given exterior circulation K , is cut by a thin symmetric
aerofoil that moves in the negative x-direction with speed U, small compared with
the sound speed c, and cuts through the vortex. In the absence of the aerofoil, there
is an irrotational circulatory flow for x2 + y2 > a2, with zero velocity for x2 + y2 < a2;
the discontinuity in tangential velocity at the surface implies a cylindrical vortex sheet
there. Viewed from a reference frame (x1, y1, z1) fixed in the aerofoil, the problem is
that of a fixed aerofoil with a vortex that moves in the positive x1-direction. It is
conceptually easiest to imagine the aerofoil to be cusped at its leading edge, so the
vortex is cut cleanly: for a rounded leading edge, the deformed vortex would pass
from the upper to lower surface via the leading edge, and it is argued that viscous
action would remove the thin part of the vortex joining the upper and lower surfaces.

For this first model, the aerofoil is at zero angle of incidence, with no circulation
around it. This ensures that the flow is symmetric about the plane z = 0; it is
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therefore sufficient to confine attention to the half-space z > 0, with a vortex passing
over a plane (z = 0) with a hump that corresponds to the upper half of the aerofoil.
The model allows for the distortion of the vortex as it passes the aerofoil. It does not
include the separate effect, at a lifting aerofoil, whereby the vortex tube on the upper
and lower surfaces would reach the trailing edge at different times, and at different
places in general, because the spanwise flow is likely to be different on upper and
lower surfaces. That mechanism is potentially very important but needs a separate
analysis.

Amiet (1986b, 1990) has considered the case of an aerofoil that intersects a vortex
at an angle different from 90o, using linearized aerofoil theory to derive a pressure
fluctuation that is proportional to the vortex strength. The problem under discussion
in the present paper is similar to that considered by Howe (1989). That analysis allows
for different internal structures in the vortex, and takes account of its distortion as it
passes the aerofoil. A formula for the surface forces is used to predict a sound field
of dipole type with strength proportional to the square of the circulation K and this
is contrasted with earlier results by Hawkings (1978) that have linear dependence on
the circulation.

The present work deals with the hollow vortex, with a view to finding the local
flow field and, in particular, the distortion of the free surface of the vortex as it
passes the aerofoil. Detailed consideration is given first to the case of incompressible
fluid, with a view to later extension to allow for the effects of compressibility. The
governing equations are given in §2, and are linearized with respect to the small
aerofoil thickness parameter ε. A formally exact solution is derived in §3, in terms
of a four-fold integral and an infinite sum over modes, for the velocity potential and
for the perturbed position of the vortex surface from its mean position. When the
vortex has small radius a, it can be represented in terms of a thin filament located
at the ‘mean centre’ x̄(z, t), ȳ(z, t) of the actual tube. Explicit expressions are given
in §4 for x̄(z, t) and ȳ(z, t), for the particular case of a two-dimensional aerofoil with
rectangular cross-section. Corresponding results for any cross-section h(x1) are then
given in terms of integrals weighted with the derivative of the shape function h(x1).
The effects of compressibility are incorporated in §5, representing the aerofoil by
a distribution of moving monopole sources and representing the vortex distortion
by a distribution of dipole sources along the z-axis with moments proportional to
(−ȳ(z, t), x̄(z, t)) at height z and time t. The results are interpreted with reference
to those for the related problem considered by Howe (1989). Numerical results are
presented for a particular case.

2. Governing equations: incompressible flow problem
A hollow vortex in the form of a circular cylinder of radius a, with its axis parallel

to the z-axis, moves in a uniform stream U of incompressible fluid, in the x1-direction,
past a thin aerofoil that is symmetric about its mid-plane z1 = 0.

In the absence of the aerofoil, the velocity field outside the vortex has only a
tranverse component vθ = K/(2πr), where K is the circulation and (r, θ) denote polar
coordinates based at the centre of the vortex. This steady circulatory flow is disturbed
by the presence of an aerofoil whose surface is given by

z1 = ±εh(x1, y1), (x1, y1) ∈ A′, (2.1)

with h = 0 outside some domain A′ which represents its planform. The parameter ε
is small compared with the minimum diameter of A′.
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Figure 1. The vortex is given by x2 + y2 < a2, z > 0; the aerofoil is between x1 = 0 and x1 = L.

It is convenient to use a reference frame (x, y, z) that is fixed relative to the vortex,
thus

x = x1 −Ut, y = y1, z = z1, (2.2)

and to define the constant

κ = K/2π, (2.3)

so as to simplify the subsequent algebra. The velocity potential is denoted by
φ(x, y, z; t).

The geometry of the problem is indicated in figure 1. The even symmetry of the
problem means that we need consider only the half-space z > 0 and the undisturbed
vortex has its surface at z > 0, r = a,−π 6 θ 6 π, where (r, θ, z) are cylindrical polars
with r2 = x2 + y2, and the upper surface of the aerofoil is given by

z = εh(x+Ut, y), (x, y) ∈ A, (2.4)

where the (moving) planform A corresponds to the domain A′, expressed in term of
(x, y).

For a hollow vortex in incompressible fluid, and with no boundaries, the velocity
field v = (κ/r)eθ , where eθ is the unit vector in the θ-direction, has potential φ0 given
by

φ0 = κθ. (2.5)

Suppose now that this steady flow is perturbed by the presence of the moving aerofoil
A. Let the total velocity potential be denoted by

φ = φ0 + εψ(r, θ, z; t). (2.6)

The incompressibility requires that ψ be harmonic, thus

∇2ψ = 0 (2.7)

in the fluid region outside the vortex and above the plane z = 0 and aerofoil A.
Boundary conditions are now required at the surface of the vortex and on the
boundary z = 0.

2.1. Boundary condition at the vortex surface

There are two conditions to be applied at the surface of the vortex and, for the small
disturbances envisaged here, these lead to conditions at its mean position (r = a).
The conditions are: (i) a kinematic requirement that particles at the interface remain
there; and (ii) continuity of pressure, so that p = p1 at the interface. Suppose that the
vortex surface is displaced slightly from its mean position at r = a, thus

r = a+ εg(θ, z; t). (2.8)
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The kinematic condition can be expressed as

D

Dt
(r − a− εg) = 0, (2.9)

where D/Dt is the total derivative ∂/∂t + v · ∇ = ∂/∂t + ∇φ · ∇. Substitution of the
potential (2.6) and linearization for small values of ε leads to the condition

∂ψ

∂r
=
∂g

∂t
+
κ

a2

∂g

∂θ
on r = a. (2.10)

Continuity of pressure requires p = p1 on the vortex interface. Bernoulli’s equation
gives

p

ρ0

+
∂φ

∂t
+ 1

2
(∇φ)2 = F(t), (2.11)

where F(t) depends on time but not on position. The requirement p = p1 at r = a+εg
leads to the linearized condition

∂ψ

∂t
+
κ

a2

∂ψ

∂θ
=
κ2

a3
g. (2.12)

The conditions (2.10) and (2.12) can be combined to eliminate the (unknown)
function g that specifies the distortion of the vortex surface, to get

∂ψ

∂r
=Lψ (2.13)

at the mean surface r = a, where the operator L is defined as

L =
a3

κ2

(
∂

∂t
+
κ

a2

∂

∂θ

)2

. (2.14)

2.2. Boundary condition at the bottom surface

The bottom boundary consists of the moving surface z = εh, given by (2.4) for
(x, y) ∈ A and the plane region z = 0 for (x, y) /∈ A. Both can be accommodated by
the condition

z = εh(r cos θ +Ut, r sin θ), (2.15)

with the understanding that h = 0 when (x, y) /∈ A, and with x = r cos θ, y = r sin θ.
As the bottom is impermeable, particles on that surface always remain there, hence

D

Dt
(z − εh) = 0 (2.16)

on z = εh, where D/Dt is the total derivative ∂/∂t+ v · ∇. For small values of ε, this
equation can be linearized to get

∂ψ

∂z
= f (2.17)

at z = 0, where f is given in terms of the thickness function h by

f(x, y; t) =

(
∂

∂t
+
κ

r2

∂

∂θ

)
h(r cos θ +Ut, r sin θ). (2.18)

2.3. Problem for ψ

The function ψ is harmonic in the region r > a, z > 0, and is subject to the boundary
condition (2.13) at r = a and condition (2.17) at z = 0. Thus

∇2ψ = 0, r > a, z > 0, (2.19)
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∂ψ

∂r
=Lψ, r = a, z > 0, (2.20)

∂ψ

∂z
= f, r > a, z = 0, (2.21)

where L is the operator defined by (2.14), and the forcing function f is given by
(2.18). Finally there is the condition that ψ → 0 as x2 + y2 + z2 →∞.

3. Formulation and Green’s function
The problem summarized by equations (2.19)–(2.21) can be solved exactly, in

principle, to get a representation for ψ in terms of a Green function weighted with
the forcing function f that appears in the boundary condition (2.21). Let G(r, r′, θ, z; t)
denote the Green function defined, for r > a, r′ > a, by the equations

∇2G =
2

r′
δ(r − r′)δ(θ)δ(z)δ(t), r > a, r′ > a, (3.1)

∂G
∂r

=LG at r = a, (3.2)

where L is the differential operator given by formula (2.14). The function G is even
in z and represents the potential at r = (r, θ, z) due to a source of strength 2δ(t) at
(r, θ, z) = (r′, 0, 0). It follows that the normal velocity on the plane z = 0 is given by

∂G
∂z

= ± 1

r′
δ(r − r′)δ(θ)δ(t) at z = ±0. (3.3)

Let

G = G1 + G2, (3.4)

where

G1 = −δ(t)/(2πR), with R = (r2 + r′2 − 2rr′ cos θ + z2)1/2, (3.5)

satisfies the equations (3.1) and (3.3).
Thus G2 is harmonic for r > a and is subject to the boundary condition

∂G2

∂r
−LG2 = −∂G1

∂r
+LG1, r = a, (3.6)

where the right-hand side is a known function of θ, z and t, with G1 given by (3.5).
The geometry of the problem suggests a solution using a Fourier series with respect
to θ and Fourier integration with respect to z. Thus we define

Gn(r, r′; s; t) =
1

2π

∫ ∞
−∞

∫ π

−π
G(r, r′, θ, z; t)eisze−inθdθdz, (3.7)

with inversion formula

G(r, r′, θ, z; t) =
1

2π

∞∑
n=−∞

einθ

∫ ∞
−∞
Gn(r, r′; s; t)e−iszds. (3.8)

The transform pair may be applied with G given in turn by G1 and G2, with respective
transforms G1n(r, r

′; s; t) and G2n(r, r
′; s; t).
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3.1. Fourier series-integral representation for G1

As G1 is an even function of z, the transform G1n is also even in s. Both functions
have the simple multiplicative time dependence δ(t), where δ denotes the Dirac delta
function. Note that G1 satisfies equation (3.1); multiplication by exp(isz − inθ) and
integration with respect to z and θ leads to the corresponding equation for G1n,
namely

r2 ∂
2G1n

∂r2
+ r

∂G1n

∂r
− (s2r2 + n2)G1n =

r′

π
δ(r − r′)δ(t). (3.9)

Solutions of the homogeneous version of this equation are the modified Bessel
functions In(|s|r) and Kn(|s|r); In(η) is finite as η → 0 but infinite as η → ∞, whilst
Kn(η) is singular at η = 0 and is exponentially small as η →∞. Thus we take

G1n = AnIn(|s|r<)Kn(|s|r>)δ(t), (3.10)

where r< and r> denote the lesser and greater of r and r′. The formula (3.10) ensures
that G1n is continuous at r = r′, and An is determined from (3.9) which requires the
discontinuity condition [

∂G1n/∂r
]r′+0

r′−0
= (πr′)−1δ(t). (3.11)

Thus An = −(1/π), where use has been made of the Wronskian relation

In(η)K ′n(η)− I ′n(η)Kn(η) = −1/η, (3.12)

and

G1 = −δ(t)

2π2

∞∑
−∞

∫ ∞
−∞
In(|s|r<)Kn(|s|r>) exp(inθ − isz)ds (3.13)

is the Fourier series-integral form for the elementary Green function G1 given by
formula (3.5). The point of this representation is that the harmonic function G2

can now be expressed in a similar form that allows us to apply the boundary
condition (3.6).

3.2. Fourier series-integral representation for G2

Let G2n be the transform of G2, where this pair of functions is related by formulae
(3.7) and (3.8). The governing equation for G2n is the homogeneous version of (3.9),
namely

r2 ∂
2G2n

∂r2
+ r

∂G2n

∂r
− (s2r2 + n2)G2n = 0 for r > a,−∞ < z < ∞, (3.14)

and it remains to satisfy the boundary condition (3.6) which has the transformed
equivalent

∂G2n

∂r
−L G2n = −∂G1n

∂r
+L G1n at r = a, (3.15)

with

L =
a3

κ2

(
∂

∂t
+

inκ

a2

)2

. (3.16)

In order to ensure boundedness as r → ∞, the In solutions of (3.14) are excluded,
hence

G2n = (Cn/π)Kn(|s|r). (3.17)

The coefficient Cn has to be chosen so that G2n satisfies a causality condition as
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well as the boundary condition (3.15) on the cylinder r = a. It is found convenient to
express Cn in the form

Cn =
In(|s|a)Kn(|s|r′)δ(t)

Kn(|s|a)
− Pn(t), (3.18)

whence substitution into the boundary condition (3.15) gives{(
∂

∂t
+

inκ

a2

)2

− κ2|s|
a3

K ′n(|s|a)
Kn(|s|a)

}
Pn =

κ2

a4

Kn(|s|r′)
K2
n (|s|a) δ(t). (3.19)

The solutions of the homogeneous version of this equation are exp(λ1t) and exp(λ2t),
where

λ1 = (−iκn+ iκµn)/a
2, λ2 = (−iκn− iκµn)/a

2, (3.20)

with

µn = {−|s|aK ′n(|s|a)/Kn(|s|a)}1/2 . (3.21)

The solution which is causal (that is, Pn = 0 for t < 0) and which satisfies the
discontinuity requirement[

dPn/dt
]

= (κ2/a4)Kn(|s|r′)/ {Kn(|s|a)}2 , (3.22)

that follows from equation (3.19), is found to be

Pn(t) = − iκ

2a2µn

Kn(|s|r′)
Kn(|s|a)2

(eλ1t − eλ2t)H(t), (3.23)

where H(t) is the Heaviside step function. Thus, on writing G2 as a sum of terms
G21 + G22, which are respectively proportional to δ(t) and H(t) and which originate
from the respective terms on the right-hand side of (3.18), we have

G = G1 + G21 + G22 for r > a, r′ > a, (3.24)

where

G1 = − δ(t)

2πR
= −δ(t)

2π2

∞∑
−∞

∫ ∞
−∞
In(|s|r<)Kn(|s|r>) exp(inθ − isz)ds, (3.25)

G21 =
δ(t)

2π2

∞∑
−∞

∫ ∞
−∞

In(|s|a)Kn(|s|r′)
Kn(|s|a)

Kn(|s|r) exp(inθ − isz)ds, (3.26)

G22 = − 1

2π2

∞∑
−∞

∫ ∞
−∞
Pn(t)Kn(|s|r) exp(inθ − isz)ds

= −H(t)κ

2π2a2

∞∑
−∞

∫ ∞
−∞

sin(κµnt/a
2)

µn

Kn(|s|r′)Kn(|s|r)(
Kn(|s|a)

)2
exp(inθ − isz − iκnt/a2)ds. (3.27)

Note that G1 + G21 is proportional to the delta function δ(t). The sum of terms is
non-zero only at t = 0, has the appropriate source singularity at (r, θ, z) = (r′, 0, 0)
and satisfies the ‘acoustically soft’ boundary condition

G1 + G21 = 0 (3.28)

at the vortex surface. It is the function G22 that accounts for the waviness of the
perturbed hollow vortex.
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Figure 2. The cross-section of the disturbed vortex is given by r = R(θ, z, t);
the tangential velocity is w.

3.3. Solution for ψ(r, θ, z; t)

The perturbation potential ψ(r, θ, z; t) is given in terms of the Green function G by
the formula

ψ(r, θ, z; t) =

∫ ∞
−∞

dt′
∫
S

∫
f(x′, y′, t′)G(r, r′, θ − θ′, z; t− t′) dx′dy′, (3.29)

where S is the region x′2 + y′2 > a2 and f is the function (2.18).

4. Effective line vortex
The expression (3.29) gives a formally exact solution for the potential ψ, and hence

for the distortion εg(θ, z, t) of the surface of the vortex, according to formulae (2.8)
and (2.12). However, the calculation involves a four-fold integration (with respect to
x′, y′, t′ and the transform variable s) and an infinite sum over all mode numbers n.

A further simplification is now made, based on the case where the vortex tube is
thin: that is, the mean radius a is small compared with the aerofoil width L. In this
case one can, for some purposes, usefully replace the hollow vortex by a hypothetical
vortex filament placed at the ‘centre’ of the vortex tube, with details given below.

This approach has the advantage of reducing considerably the multiple integrals
that are inherent in the full solution. It also has the important advantage of allowing
the incorporation of compressibility effects, and estimates for the distant sound field.
For according to Howe (1975), Powell (1995) and Leppington (1995), a moving line
vortex in compressible fluid is acoustically equivalent to a moving line dipole or dipole
sheet, directed along the common perpendicular to the mean flow and the line vortex.
Such an estimate for the sound field is given in §5, and attention is now turned to the
task of identifying the position of the equivalent vortex filament in the incompressible
flow problem considered hitherto.

Consider the cross-section of the hollow vortex, at height z and time t, given by
the closed curve

r = R(θ) ≡ a+ εg(θ, z; t), (4.1)

as shown in figure 2: the diagram is schematic as formula (4.1), with ε small, implies
that the contour is actually a small deformation from the circle of radius a.

Note that R depends also on z and t, but the latter will be omitted henceforth, for
the sake of algebraic simplicity. There is no flow inside the vortex so the strength
w of the vortex sheet, that occupies the deformed surface r = R(θ), is the tangential
velocity there, namely w = ∂φ/∂s, where s is arclength. Thus the x-component of the
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effective centre is given by

Kx̄ =

∫
wxds =

∫ π

−π
w(θ) cos θ R2

{
1 +

1

R2

(
dR

dθ

)2
}1/2

dθ, (4.2)

where

K =

∫
wds = 2πκ

is the circulation and R is the function defined by formula (4.1). For small values of
the parameter ε, we pose the expansion

w = w0 + εw1 + · · · (4.3)

to get

x̄ =
ε

2πκ

∫ π

−π
(a2w1 + 2aw0g) cos θ dθ. (4.4)

Now the tangential velocity w is given by ∂φ/∂s where φ = φ0 + εψ is the total
velocity potential, whence it is found that

w0 =
κ

a
, w1 =

1

a

∂ψ

∂θ
− κg

a2
, (4.5)

with g given in terms of ψ by formula (2.12). Thus

x̄ =
ε/a

2πΓ

∫ π

−π

{
2
∂ψ

∂θ
+

1

Γ

∂ψ

∂t

}
cos θ dθ, (4.6)

in terms of the perturbation potential ψ, and with

Γ =
κ

a2
=

K

2πa2
. (4.7)

Similarly the y-component of the effective centre, at height z and time t, is given
by

ȳ =
ε/a

2πΓ

∫ π

−π

{
2
∂ψ

∂θ
+

1

Γ

∂ψ

∂t

}
sin θ dθ. (4.8)

The integrand of (4.6) is evaluated on the mean radius r = a; hence, from (3.29) and
(3.8),

ψ =
1

2π

∫ t

−∞
dt′
∫
S

∫
f(x′, y′, t′)dx′dy′

∞∑
n=−∞

∫ ∞
−∞
Ḡn(a, r′; s; t− t′)einθ−isz ds, (4.9)

with

Ḡn(a, r′; s; t) = −Γ
π

Kn(|s|r′)
Kn(|s|a)

sin(Γµnt)

µn
exp(−iΓnt). (4.10)

Note that the cos θ term in the integrand of (4.6) ensures that only the terms n = ±1
of the sum in (4.9) contribute to the integral expression (4.6) for x̄. Thus one finds
that

x̄ = −ε/a
2π2

∫ t

−∞
dt′
∫
S

∫
f(x′, y′, t′)dx′dy′

∫ ∞
−∞

e−isz K1(|s|r′)
K1(|s|a)

1

µ
P (t− t′; s) ds, (4.11)
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where

µ = µ1 =

{
1 + |s|aK0(|s|a)

K1(|s|a)

}1/2

(4.12)

and

P (t) = sin(Γµt) sin(Γt+ θ′) + µ cos(Γµt) cos(Γt+ θ′). (4.13)

Now in the limit of small a, with (r′, z′) fixed, it is argued that the main contribution to
the s-integration comes from the vicinity of s = 0. Thus we make the approximations

K1(|s|a) ∼ (|s|a)−1 and µ ∼ 1, (4.14)

whence∫ ∞
−∞

exp(−isz)
K1(|s|r′)
K1(|s|a)

µ−1P (t; s) ds ∼ 2a cos θ′
∫ ∞

0

s cos(sz)K1(sr
′) ds. (4.15)

The latter integral can be evaluated exactly, using the result (see Watson 1944) that∫ ∞
0

cos(sz)K0(sr
′)ds = (π/2)(z2 + r′2)−1/2, which can be differentiated with respect to

r′ to get ∫ ∞
0

s cos(sz)K1(sr
′)ds = (π/2)r′(z2 + r′2)−3/2. (4.16)

It follows that

x̄ = − ε

2π

∫ t

−∞
dt′
∫
S

∫
x′f(x′, y′, t′)

(x′2 + y′2 + z2)3/2
dx′dy′. (4.17)

A similar procedure gives an analogous expression for ȳ, namely

ȳ = − ε

2π

∫ t

−∞
dt′
∫
S

∫
y′f(x′, y′, t′)

(x′2 + y′2 + z2)3/2
dx′dy′. (4.18)

4.1. Evaluation of x̄(z, t)

The pair of formulae (4.17) and (4.18) give relatively simple representations for
the mean centre (x̄(z, t), ȳ(z, t)) of the equivalent line vortex, in terms of the function
f(x, y, t) that is related to the aerofoil shape, h(x, y), according to the expression (2.18).
To make further progress it is necessary to choose a particular shape function h(x1, y1)
and the simplest prototype case is that of the ‘top-hat’ profile

h(x1, y1) = H(x1)−H(x1 − L), (4.19)

independent of y1, where H(x1) denotes the Heaviside step-function. Such a rectan-
gular aerofoil profile is not realistic, but it has the distinct advantage that it leads
to explicit formulae for x̄ and ȳ. Furthermore, this basic special case can be used
to generate more general profiles, by superposition, and this point will be taken up
at the end of this section. According to (2.18), the function f, that appears in the
integrand (4.17), is given by

f(x′, y′, t′) = {δ(x′ +Ut′)− δ(x′ +Ut′ − L)}
{
U − κy′

x′2 + y′2

}
, (4.20)

where δ is the Dirac delta function. Thus

x̄ = − ε

2π

∫ t

t−L/U
Qx dt′, (4.21)
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with

Qx =

∫
S

∫
δ(x′ +Ut′)

{
U − κy′

x′2 + y′2

}
x′

(x′2 + y′2 + z2)3/2
dx′ dy′, (4.22)

evaluated over the region S (x′2 + y′2 > a2) outside the circle of radius a, and this
integration can be performed exactly. Note first that the term proportional to Γa2y′

gives zero contribution as it is an odd function of y′. The delta function δ(x′ + Ut′)
picks out the value of the integrand on the line x′ = −Ut′. If U|t′| > a, it is clear
that the integral Qx is the same as if the integration region were taken over the
whole (x′, y′)-space; if U|t′| < a, on the other hand, the restricted domain S has to be
accounted for. Thus one finds that

Qx = −2U2t′
∫ ∞
ξ

(U2t′2 + y′2 + z2)−3/2 dy′, (4.23)

where

ξ = 0 if U|t′| > a; ξ = (a2 −U2t′2)1/2 if U|t′| < a, (4.24)

and the integral (4.23) can be evaluated to get

Qx = − 2U2t′

U2t′2 + z2

{
1− (a2 −U2t′2)1/2H(a2 −U2t′2)

(a2 + z2)1/2

}
. (4.25)

It remains to perform the integration (4.21) with respect to t′. It is convenient to
express the results in terms of the new variables τ, τ′ and ζ, which are defined as

τ′ = Ut′/a; τ = Ut/a; ζ = z/a. (4.26)

It is found that the integral (4.21) reduces to the solution:

x̄ = (ε/2π){Px(ζ, τ)− Px(ζ, τ− L/a)}, (4.27)

with

Px(ζ, τ) = Pe(ζ, τ) if |τ| > 1, (4.28)

Px(ζ, τ) = Pe(ζ, τ) + pe(ζ, τ) if |τ| < 1, (4.29)

where

Pe(ζ, τ) = ln(τ2 + ζ2), (4.30)

pe(ζ, τ) = ln

{
(1 + ζ2)1/2 + (1− τ2)1/2

}2

τ2 + ζ2
− 2

(1− τ2)1/2

(1 + ζ2)1/2
. (4.31)

Note that both Pe and pe are even functions of τ and that pe(ζ, 1) = 0. It is seen that
x̄ is an odd function of τ − L/(2a), hence of t − L/(2U). Evidently x̄ has different
forms in the five time régimes: (i) τ < −1; (ii) −1 < τ < 1; (iii) 1 < τ < (L/a) − 1;
(iv) (L/a)− 1 < τ < (L/a) + 1; (v) τ > (L/a) + 1. Régime (i) is that before the vortex
tube reaches the leading edge of the aerofoil, régime (ii) corresponds to the vortex
passing the leading edge, with similar interpretations for the other time intervals (iii),
(iv) and (v). In each of the régimes (i), (iii) and (v), for example, x̄ has the form

x̄ =
ε

2π
ln

{
τ2 + ζ2

(τ− L/a)2 + ζ2

}
. (4.32)
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4.2. Evaluation of ȳ(z, t)

A similar procedure can be followed for the evaluation of ȳ (formula (4.18)) for the
case of the top-hat profile (4.19). One finds that

ȳ = − ε

2π

∫ t

t−L/U
Qy dt′, (4.33)

where Qy has form similar to that in (4.22), except that x′ is replaced by y′ in the
numerator of the integrand. In this case, the term proportional to U gives zero
contribution, due to the odd symmetry with respect to y′, and we find

Qy = −K
2π

∫
S

∫
δ(x′ +Ut′)y′2

(x′2 + y′2)(x′2 + y′2 + z2)3/2
dx′ dy′, (4.34)

where S is again the region x′2 + y′2 > a2. If U|t′| > a, the value of Qy is the same
as if the integral (4.34) were taken over all (x′, y′)-space, and is readily evaluated. If
U|t′| < a, on the other hand, due care is needed to deal with the restricted domain S ,
thus

Qy = −K
π

∫ ∞
ξ

y′2 dy′

(U2t′2 + y′2)(U2t′2 + y′2 + z2)3/2
if U|t′| > a, (4.35)

where ξ is the number defined in (4.24). The results are conveniently represented in
terms of the variables τ′, τ and and ζ = z/a of formula (4.26). It is found that

Qy = − K

πa2
G(ζ, τ′), (4.36)

where

G(ζ, τ′) = G1(ζ, τ
′) if |τ′| > 1, (4.37)

G(ζ, τ′) = G1(ζ, τ
′) + g1(ζ, τ

′) if |τ′| < 1, (4.38)

with G1(ζ, τ
′) and g1(ζ, τ

′) defined by

ζ2G1(ζ, τ
′) =

{
1− |τ

′|
ζ

tan−1 ζ

|τ′|

}
, (4.39)

ζ2g1(ζ, τ
′) = − (1− τ′2)1/2

(1 + ζ2)1/2
+
|τ′|
ζ

tan−1

{
ζ

|τ′|
(1− τ′2)1/2

(1 + ζ2)1/2

}
, for |τ′| < 1. (4.40)

It remains to evaluate the time integral (4.33), with t′ = aτ′/U, and this can be done
explicitly in terms of the functions Po(τ) and po(τ), which are respectively integrals of
G1 and g1, as follows:

ζ2Po(ζ, τ) = ζ2

∫ τ

0

G1(ζ, τ
′) dτ′ (4.41)

=
πζ

4
sgnτ+

τ

2
− ζ2 + τ2

2ζ
sgnτ tan−1 ζ

|τ| ; (4.42)

ζ2po(ζ, τ) = ζ2

∫ τ

0

g1(ζ, τ
′) dτ′ (4.43)

=
ζ2 sin−1 τ

2(1 + ζ2)1/2
− τ(1− τ2)1/2

2(1 + ζ2)1/2
+
ζ2 + τ2

2ζ
tan−1 ζ(1− τ2)1/2

τ(1 + ζ2)1/2
− πζ

4
sgnτ, (4.44)



216 F. G. Leppington and R. A. Sisson

for |τ| < 1. Note that Po and po are odd functions of (scaled) time τ, and that

po(ζ, 1) = (π/4){(1 + ζ2)−1/2 − ζ−1}. (4.45)

Thus the time-integral (4.33) can be accomplished, leading to the result

ȳ =
εK

2π2aU
{Py(ζ, τ)− Py(ζ, τ− L/a)} , (4.46)

where

Py(ζ, τ) = Po(ζ, τ)− po(ζ, 1) if τ < −1, (4.47)

Py(ζ, τ) = Po(ζ, τ) + po(ζ, τ) if − 1 < τ < 1, (4.48)

Py(ζ, τ) = Po(ζ, τ) + po(ζ, 1) if τ > 1. (4.49)

It is seen that ȳ is an even function of the (scaled) time variable τ− L/(2a), hence of
the time t − L/(2U). Expressions (4.27) and (4.46) provide explicit formulae for the
location of the equivalent vortex filament at time t = aτ/U and height z = aζ.

4.3. Values near ζ = 0 and near τ = 0

The forms (4.28)–(4.31) and (4.41)–(4.44) appear to have singular behaviour as ζ → 0
or τ → 0, but the singularities cancel between the various terms. For the purpose of
numerical evaluations of integrals, such as are required for the expression (5.46), with
Ix and Iy defined by (5.42) and (5.43), it is desirable to determine the limiting forms
for P̈x (= d2Px/dτ

2) and P̈y (= d2Py/dτ
2) when either or both of the variables ζ, τ

may be small. It is found that

P̈x ∼ 1, P̈y ∼ −τ/4 as τ→ 0, ζ → 0; (4.50)

P̈x ∼
2

ζ2

{
(1 + ζ2)1/2 − 1

(1 + ζ2)1/2

}
, P̈y ∼

τ

ζ4

{
2(1 + ζ2)1/2 − (2 + ζ2)

(1 + ζ2)1/2

}
, (4.51)

as τ→ 0, with ζ fixed;

P̈x ∼ −
2

τ2
, P̈y ∼ −

2

3τ3
, as ζ → 0, |τ| > 1; (4.52)

P̈x ∼
2

τ2

{
1− (1− τ2)1/2

(1− τ2)1/2

}
, P̈y ∼

{
−2 + (1− τ2)1/2(2 + τ2)

3τ3

}
, (4.53)

as ζ → 0, with |τ| < 1 and fixed.
Note that P̈x has an integrable (inverse square root) singularity as τ→ 1.

4.4. General aerofoil cross-section

The results (4.27) and (4.46) have been derived for the special case of a two-
dimensional aerofoil whose cross-section h(x1) has the top-hat profile given by (4.19).
A general cross-section h(x1) (with h = 0 for x1 6 0 and for x1 > L) can be generated
by the identity

h(x1) = −
∫ L

0

dh(l)

dl
{H(x1)−H(x1 − l)} dl. (4.54)

By linear superposition, the solution for ψ , and also (x̄, ȳ), can be be inferred. Thus

x̄ =
ε

2π

∫ L

0

dh(l)

dl
Px(ζ, τ− l/a) dl, (4.55)
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ȳ =
εK

2π2aU

∫ L

0

dh(l)

dl
Py(ζ, τ− l/a) dl, (4.56)

with Px and Py defined by (4.28), (4.29) and (4.47)–(4.49).

5. The sound field
The calculations described in §§2–4 are for the evolution of a thin hollow vortex in

incompressible flow. The present section concerns the effects of compressibility. If the
Mach number M, given by

M = U/c, (5.1)

is small, where U is the flow speed and c is the mean sound speed, then the
incompressible flow can be matched onto a sound field, valid at distances � a from
the vortex.

The sound field can be attributed to two effects, arising from the imposed veloc-
ity (2.21) and from the the distortion (x̄, ȳ) of the effective line vortex. It is convenient
to refer to these respective contributions as ‘displacement sound’ and ‘vortex sound’,
but it is noted that the vortex deflection is itself a result of the aerofoil displacement.
Thus we may express the compressible sound field φc (the outer potential in the
language of matched asymptotic expansions) as the sum of terms

φc = φdis + φvor, (5.2)

and these are calculated separately as follows.

5.1. Displacement sound

The potential φdis is subject to the acoustic wave equation, together with the boundary
condition (from (2.21))

∂φdis

∂z
= ±εf(x, y; t)H(x2 + y2 − a2) at z = ±0, (5.3)

where H denotes the Heaviside step-function and f is given in terms of the aerofoil
thickness function h according to expression (2.18). Note that f 6= 0 only on that
part A of the (x, y)-plane that corresponds to the (moving) planform of the aerofoil,
and that φdis is even with respect to z. The boundary condition (5.3) is equivalent
to the presence of a source distribution of strength 2εf(x, y; t)H(x2 + y2 − a2), per
unit area, at the plane z = 0, in a compressible fluid. Thus φdis is specified by the
inhomogeneous wave equation{

∇2 − 1

c2

∂2

∂t2

}
φdis = 2εf(x, y; t)H(x2 + y2 − a2)δ(z). (5.4)

For the particular case of the rectangular profile (4.19), the function f is propor-
tional to the difference between a pair of delta functions and we have

φdis(x, y, z; t) = φ
(0)
dis(x, y, z; t)− φ

(0)
dis(x, y, z; t− L/U), (5.5)

where φ(0)
dis satisfies the equation{

∇2 − 1

c2

∂2

∂t2

}
φ

(0)
dis = 2ε

{
U − K

2π

y

x2 + y2

}
δ(x+Ut)δ(z)H(x2 + y2 − a2). (5.6)

It is expedient to deal with the convective factor δ(x+Ut) of equation (5.6) by means
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of the Lorentz transformation

X = β(x+Ut), Y = y, Z = z, T = β(t+Ux/c2) (5.7)

where c is the sound speed, and

β = (1−M2)−1/2, (5.8)

In particular, β ∼ 1 in the low Mach number limit envisaged here. In terms of the
new variables, (X,Y , Z, T ), the equation (5.6) for φ(0)

dis reduces to the non-convective
form {

∇2
X −

1

c2

∂2

∂T 2

}
φ

(0)
dis = βδ(X)δ(Z)q0(Y ,T ), (5.9)

where

q0(Y ,T ) = q(Y ,T )H(β2U2T 2 + Y 2 − a2), (5.10)

with

q(Y ,T ) = 2ε

{
U − K

2π

Y

β2U2T 2 + Y 2

}
. (5.11)

Evidently φ(0)
dis corresponds to a line distribution of sources, with explicit solution

φ
(0)
dis = − β

4π

∫ ∞
−∞
R−1q0(Y

′, T − R/c) dY ′, (5.12)

with

R2 = X2 + Z2 + (Y − Y ′)2. (5.13)

The corresponding contribution p
(0)
dis to the pressure is given by p(0)

dis = −ρ0∂φ
(0)
dis/∂t ≡

−ρ0β(∂φ(0)
dis/∂T +U∂φ

(0)
dis/∂X). In the far field, where R is large,

p
(0)
dis ∼

ρ0β
2

4π

∫ ∞
−∞
R−1

(
1−MX

R

)
∂q0

∂T
dY ′. (5.14)

With a small value for the Mach number M, β2 ∼ 1 and MX/R ∼ 0, hence

p
(0)
dis ∼

ρ0

4π

∫ ∞
−∞
R−1 ∂q0

∂T
(Y ′, T − R/c) dY ′, (5.15)

with q0 given by (5.10). Thus the pressure field due to the displacement effect is given
by

pdis = p
(0)
dis(X,Y , Z;T )− p(0)

dis(X − βL, Y , Z;T − βL/U), (5.16)

with

p
(0)
dis(X,Y , Z;T ) ∼ I(X,Y , Z;T ) + J(X,Y , Z;T ), (5.17)

where

I =
ρ0U

2
1

2π

∫ ∞
−∞
R−1(T − R/c)q(Y ′, T − R/c)δ(U2

1 (T − R/c)2 + Y ′2 − a2)dY ′, (5.18)

J =
ρ0

4π

∫ ∞
−∞
R−1 ∂q

∂T
(Y ′, T − R/c)H(U2

1 (T − R/c)2 + Y ′2 − a2)dY ′, (5.19)

where

U1 = βU ∼ U. (5.20)
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The integral I has the form

I =

∫ ∞
−∞
P (Y ′)δ(g(Y ′))dY ′ =

∑
i

P (Yi)/|g′(Yi)|, (5.21)

summed with respect to all the real values Y ′ = Yi such that

g(Y ′) ≡ U2
1 (T − R/c)2 + Y ′2 − a2 = 0. (5.22)

Clearly any real roots must be such that Y ′2 6 a2. Now R is large in the far field, so
T must also be large for the existence of real roots of equation (5.22). Thus

R = R0(1− nY ′/R0 + · · ·), (5.23)

where

n = Y /R0 and R2
0 = X2 + Y 2 + Z2. (5.24)

Defining the dimensionless variables τ1 and η by the equations

aτ1 = U1(T − R0/c), aη = Y ′, (5.25)

where the suffix in τ1 is used to distinguish this time-like variable from that used in
§4, the function g has the approximate form

g ∼ a2{(τ1 +M2η)2 + η2 − 1} (5.26)

with

M2 = βMn ∼MY /R0. (5.27)

The roots of the quadratic expression (5.26), with M small, are

Y1/a = η1 = −τ1M2−(1+M2
2−τ2

1)
1/2, Y2/a = η2 = −τ1M2 +(1+M2

2−τ2
1)

1/2, (5.28)

provided that τ2
1 6 (1 +M2

2 ): there are no real roots for larger values of |τ1|. As M2

is small, the square-root factor can be approximated by (1− τ2
1)

1/2. Thus the integral
has the value

I ∼ I (1) + I (2) for τ2
1 < 1, (5.29)

where

I (1) ∼ ρ0Uε

2πR0

(1− τ2
1)
−1/2{2Uτ1}, I (2) ∼ ρ0Uε

2πR0

(1− τ2
1)
−1/2

{
−KM2

πa
(1− 2τ2

1)

}
, (5.30)

for τ2
1 < 1, with I = 0 for other values of τ1. The singularity in I , at τ1 = ±1,

is a consequence of the abrupt change in thickness of our aerofoil function h(x1)
at x1 = 0. The corresponding results for a smoother profile h(x1) are given by
formulae (4.54), (4.55), (4.56) and (6.1) and the latter integral will smooth out the
square-root singularity.

The integral J (equation (5.19)) can conveniently be expressed in terms of the
dimensionless variables η and τ1 of formulae (5.25). Thus

J =
ρ0UKε

2π2a

∫
η(τ1 +M2η)

R {η2 + (τ1 +M2η)2}2
dη, (5.31)

integrated over all η such that (τ1 +M2η)2 + η2 > 1, with R2 = X2 + Z2 + (Y − aη)2.
With α1, α2, α3 defined as

α1 = τ1M2/(1 +M2
2 ), α2 = τ1/(1 +M2

2 ), α3 = τ1/M2, (5.32)



220 F. G. Leppington and R. A. Sisson

and the change of variable

v = η + α1, (5.33)

the integral (5.31) can be expressed as

J ∼ ρ0U
2Kεn

2π2a

∫ ∞
v0

{
F−

R−
+
F+

R+

}
dv, (5.34)

where

F±(v) =
(v2 − α2

2)± v(2α1 − α3)

(v2 + α2
2)

2
, (5.35)

n = Y /R0, R±(v)2 = X2 + Z2 + (Y + aα1 ± av)2, (5.36)

and the lower limit v0, with v0 > 0, is given by

v2
0 = max[0, (1 +M2

2 − τ2
1)/(1 +M2

2 )2]. (5.37)

The approximations β ∼ 1 and 1 +M2
2 ∼ 1 have been used in the analysis leading to

formula (5.34); the approximation 1 +M2
2 ∼ 1 may also be used in expression (5.37)

for the lower limit v0. The integral (5.34) is suitable for numerical evaluation, and
the pressure contribution pdis attributed to the displacement sources is then given by
formulae (5.16), (5.17), (5.29) and (5.34).

5.2. Vortex sound

It remains to calculate the contribution φvor to the potential, arising from the distortion
of the vortex tube.

According to Powell (1995) and Howe (1975), there is a connection between moving
vortices and the sound field due to distributions of dipoles directed along the common
perpendicular to the mean flow and the vorticity. A related representation due to
Leppington (1995) for the sound field induced by a moving vortex filament is that
of an equivalent dipole sheet, of strength proportional to the circulation constant
K , spread over the surface generated by the path of the vortex line from its distant
‘initial’ position to its current location specified by x = x̄(t, z), y = ȳ(t, z). Now the
distortions x̄ and ȳ are small (proportional to the aerofoil thickness parameter ε) so
it is natural to characterize the unsteady sound field in terms of a distribution of
dipoles along the z-axis.

A key identity is the well-known result that a loop vortex line C , with circulation K ,
in incompressible fluid, produces the same velocity field as that due to a distribution
of dipoles, of strength K per unit area, spread over a surface Sc spanned by C (for
example, see Lamb (1945) §150). In the present context, let δC denote the perimeter
of the elementary rectangle δSc with corners at (x, y, z) = (0, 0, z), (0, 0, z+ δz), (x̄, ȳ, z)
and (x̄, ȳ, z + δz). The additional potential δφvor , due to the displaced position x̄, ȳ
of our vortex line, is therefore equivalent to that of a dipole distribution of strength
K , spread over the elementary area δSc. With x̄, ȳ small, this is equivalent to a point
dipole at (0, 0, z), of moment δµ, with

δµ = K(ȳ,−x̄)δz. (5.38)

The identity described above is for incompressible flow. An estimate for the sound
field is obtained by taking the same dipole distribution (5.38), along the z-axis, and
subject to the wave equation with sound speed c. This amounts to the idea of
matching a locally incompressible field with an outer sound field. Thus the outer
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potential is given by

φvor ∼
K

4π

{
∂

∂x

∫ ∞
−∞

ȳ(z′, t− R/c)
R

dz′ − ∂

∂y

∫ ∞
−∞

x̄(z′, t− R/c)
R

dz′
}
, (5.39)

where

R2 = x2 + y2 + (z − z′)2, (5.40)

and with x̄(z, t), ȳ(z, t) given in terms of the dimensionless variables ζ = z/a and
τ = Ut/a by formulae (4.27) and (4.46).

In the far field, as x2 +y2 + z2 →∞ the most significant terms, from the derivatives
in (5.39), are those that correspond to variations of x̄ and ȳ with respect to their
second (retarded time) variable. Thus one finds the far-field expressions

φvor ∼
K

4π

U

c

{
−x
∫ ∞
−∞

ȳτ(z
′, t− R/c)
R2

dζ ′ + y

∫ ∞
−∞

x̄τ(z
′, t− R/c)
R2

dζ ′
}
, (5.41)

where ζ ′ = z′/a and x̄τ, ȳτ denote derivatives of x̄ and ȳ with respect to τ.
It is convenient to introduce the functions Ix(x, y, z; τ) and Iy(x, y, z; τ), defined by

the integrals

Ix =

∫ ∞
−∞
R−2 {Px(ζ ′, τ− (UR/ca))− Px(ζ ′, τ− (UR)/(ca)− L/a)} dζ ′, (5.42)

Iy =

∫ ∞
−∞
R−2 {Py(ζ ′, τ− (UR/ca))− Py(ζ ′, τ− (UR)/(ca)− L/a)} dζ ′, (5.43)

where Px(ζ, τ) and Py(ζ, τ) are given by equations (4.28), (4.29) and (4.47)–(4.49). The
result (5.41) can then be written in the form

φvor ∼
εKU

8π2c

{
−
(

K

πaU

)
x

dIy
dτ

+ y
dIx
dτ

}
. (5.44)

The corresponding pressure fluctuation pvor(x, y, z, t), given by

pvor = −ρ0

∂φvor

∂t
, (5.45)

with ∂/∂t = (U/a)∂/∂τ, therefore has the far-field form

pvor ∼ p(x)
vor + p(y)

vor, (5.46)

where the x-dipole and y-dipole fields p(x)
vor and p(y)

vor are given by

p(x)
vor ∼

ρ0εK
2U

8π3a2c
x
d2Iy

dτ2
, p(y)

vor ∼ −
ρ0εKU

2

8π2ac
y
d2Ix

dτ2
. (5.47)

5.3. Distant sound field

The far-field pressure fluctuation p is the sum of the ‘displacement’ and ‘vortex’ sound
contributions described above, thus

p = pdis + pvor, (5.48)

and the sound pressure level SPL is defined as

SPL = 20 log10

{
|p|

2× 10−5

}
. (5.49)
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The corresponding expressions

SPLdis = 20 log10

{
|pdis|

2× 10−5

}
, SPLvor = 20 log10

{
|pvor|

2× 10−5

}
(5.50)

are used to compare logarithmic measures of the separate displacement and vortex
contributions.

Figure 3(a) shows a graph of SPL, for the point (x, y, z) = (100, 100, 50) and with
the following values for the various parameters: U = 150, c = 340, a = 0.05, L = 0.3,
ε = 0.05, K = 15, ρ0 = 1.2. The vortex has the most significant distortions when
it passes the leading and trailing edges of the aerofoil; our time scale is such that
the leading edge passes the centre of the vortex at time t = 0, and the trailing edge
passes the vortex centre at time t = L/U. The largest distortions of the vortex are
near z = 0, so the most significant contributions to the sound field, arising from the
interaction with the leading edge, will reach an observer at (x, y, z) at times close to
t1 = R1/c, where R2

1 = x2 + y2 + z2; similarly, the effect from the interaction with the
trailing edge will arrive at times close to t2 = t1 + L/U. In the example of figure 3,
t1 = 0.441 and t2 = 0.443, and the acoustic pressure fluctuation is most significant in
this vicinity.

Note that the peak values of sound pressure occur in or near the very small time
intervals t1 ± ∆t and t2 ± ∆t, where 2∆t = 2a/U is the time taken for the vortex core
to pass the leading edge or trailing edge. The induced pressure decreases rapidly
away from those time intervals. The graph is plotted with respect to the scaled time
τs = (U/a)(t − t1), with t1 = R1/c. In the small Mach number limit, M → 0, the
scaled time τs = −1 corresponds to the arrival of the signal that was launched when
the aerofoil first met the surface of the vortex, at the point (x, y, z) = (a, 0, 0); with M
small but non-zero, the corresponding value for τs is τs = −1−Mx/R1 (≈ −1.3 in the
example of figure 3). Similarly, the arrival of the signal launched when the aerofoil
leading edge meets the back of the vortex (at (−a, 0, 0)) is given by τs = 1 +Mx/R1;
there are similar contributions arising from the interaction of the vortex with the
trailing edges of the aerofoil. Thus peak values for SPL occur near the intervals
|τs| < 1 and |τs − 6| < 1 with the value L/a = 6 taken here. The unit of scaled time
τs = 1 corresponds to a real time interval t = 1/3000 in this example.

Figure 3(b) shows separately the displacement and vortex sound terms, SPLdis and
SPLvor . It is seen that the displacement sound is dominant at times close to those
that correspond to the vortex tube crossing the leading edge and trailing edge. The
vortex sound is more significant at other times and should not be ignored.

The extreme peaks in SPL and SPLdis at τs ≈ 1.3 and at τs − 6 ≈ 1.3 correspond
to the square-root singularity in formula (5.40) and are a consequence of our choice
of a ‘top-hat’ profile for the aerofoil shape function h(x1). This singularity will be
smoothed out for a more realistic profile, according to formulae (4.54)–(4.56) and
(6.1). The extreme troughs in SPL, near τs ≈ −1.3, 0.1, 1.3, 4.7, 6.1, 7.3, correspond
to changes of sign in the pressure fluctuation.

5.4. Total y-dipole strength

It is instructive to consider the total dipole moments that correspond to the ‘displace-
ment’ and ‘vortex’ sound contributions. According to formulae (5.5) and (5.6), the
potential φdis is that of a source distribution along the parallel (and moving) lines at
(x, z) = (−Ut, 0) and (x, z) = (−Ut + L, 0). The total dipole moment with respect to
y is given by

Ddis(τ) = −(εKa/π) {µ1(τ)− µ1(τ− L/a)} , (5.51)
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Figure 3. Sound pressure level against scaled time τs at (x, y, z) = (100, 100, 50). (a) Graph of SPL;
(b) graphs of SPLdis (——� ) and SPLvor (——• ).

where τ is the dimensionless time variable τ = Ut/a and

µ1(τ) = lim
N→∞

1

a

∫ N

−N

y2H(U2t2 + y2 − a2)

U2t2 + y2
dy − 2N

a
. (5.52)

The constant 2N/a has been subtracted for convenience, to expedite the limit N →∞,
and does not affect the difference between the two terms in expression (5.51). The
integration is elementary and leads to the expression

µ1 =

{
−π|τ| if |τ| > 1

−2τ sin−1 τ− 2(1− τ2)1/2 if |τ| < 1.
(5.53)
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Formulae (5.38) and (5.39) indicate that the ‘vortex’ sound is that due to a distri-
bution of dipoles along the z-axis. In particular, the total y-component of the dipole
strength is given by

Dvor(τ) = −(εKa/π) {µ2(τ)− µ2(τ− L/a)} , (5.54)

where, from (4.27),

µ2(τ) = lim
M→∞

∫ M

0

{Px(ζ, τ)− ln(ζ2)} dζ, (5.55)

with Px given by (4.28), (4.31), and where the logarithmic term has been subtracted
to expedite the limit M →∞. After some elementary manipulation one finds that

µ2(τ) ≡ −µ1(τ), (5.56)

given by (5.53). That is, the y-component of the dipole moment has zero total: the
‘displacement’ and ‘vortex’ contributions are equal and opposite. This does not imply
that these y-dipoles give an insignificant contribution, as they are not concentrated
at the origin but are distributed along straight lines, parallel to the y-axis for the
‘displacement’ terms and parallel to the z-axis for the ‘vortex’ terms. The identity (5.56)
is not unexpected, as it is consistent with the argument used by Howe (1989) and
with the general work of Curle (1955) and Ffowcs Williams & Hawkings (1969) who
relate the dipole moments to the forces on surfaces: in the present problem the force
on the aerofoil has no component in the y-direction. The identity (5.56) provides a
non-trivial test of the algebra in §§4–5.

The above observations are useful in reconciling our results with those due to Howe
(1989) in a related problem. The sound field has here been expressed as a sum of five
terms, namely

p ∼ {I (1)(t)− I (1)(t− L/U)}+ p(x)
vor

+{I (2)(t)− I (2)(t− L/U)}+ {J(t)− J(t− L/U)}+ p(y)
vor, (5.57)

given by formulae (5.30), (5.34), (5.47) and the functions I and J also depend on
position as well as time t. The first term, I (1)(t) − I (1)(t − L/U), is the pressure field
induced by a source distribution of strength proportional to the derivative h′ of the
thickness function, over that part of the aerofoil outside the vortex tube; for the
present case, with a rectangular profile, this reduces to a pair of line sources (outside
the vortex), at the leading and trailing edges. The last three terms are proportional to
KU2n = KU2y/R and correspond to dipoles aligned in the y direction. Now the total
y-dipole strength is zero, as a consequence of the identity (5.56). The equivalents of
these terms are discounted in the problem considered by Howe (1989); in the present
context it is argued that they should be retained, as the dipoles are not concentrated
at a point but are distributed along infinite straight lines. That leaves the term p(x)

vor

which is proportional to K2Ux/R and corresponds to a dipole in the x-direction: this
is analogous to the result derived by Howe.

6. Concluding remarks
There are several different mechanisms that are relevant to the interaction of a

vortex with an aerofoil, and this work concentrates attention on one particular aspect.
That is, it aims to estimate the effect when a thin hollow vortex is disturbed as it
passes the leading edge of and is displaced from its mean position by a thin symmetric
aerofoil. The central idea has been to calculate first the perturbation of the vortex on
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the basis of incompressible flow, then to represent the moving vortex tube in terms
of an equivalent vortex filament.

Finally, the sound field has been characterized as a sum of ‘displacement’ and
‘vortex’ contributions. These are represented respectively in terms of a distribution of
moving monopole sources to account for the displacement effect of the aerofoil, and
by a distribution of dipoles of moment related to the distortion of the vortex from
its mean position.

As expected, the peak pressures occur as a result of the distortion of the vortex as
it passes the aerofoil. One of the dipole terms of expression (5.46) is proportional to
the square of the circulation constant K , in agreement with the prediction of Howe
(1989). It is found that the displacement sound is the more significant in the time
intervals that correspond to the vortex tube crossing the leading edge and trailing
edge. The vortex sound is more significant at other times and should not be ignored.

The analysis does not deal with the effect of the internal structure of the vortex
core; the representation of the interior by a hollow, with negligible density and
with constant surface pressure, is reasonable for the underwater problem but is less
realistic in the aerodynamic case. The corresponding analysis would be much more
difficult if a given interior vorticity distribution were imposed. The present model
does not account for the larger-scale non-linear distortions of the vortex as it passes
the aerofoil, nor for the possibility of axial flow down the core of the vortex. It does
not address the separate effect, at a lifting surface, when the vortex tube on the upper
and lower surfaces reach the trailing edge at different times, due to the more rapid
flow on the upper surface.

The choice of the rectangular aerofoil profile (4.19) is justified on the grounds
that the vortex distortion functions x̄ and ȳ can be calculated explicitly in this
case, leading to relatively simple expressions (in the form of single integrals) for the
displacement and vortex sound contributions. The results are of interest, even though
such an aerofoil profile is not physically realistic. Furthermore, any cross-section
function h(x1) can be generated as a superposition of ‘top-hat’ profiles, according to
formula (4.54); the corresponding expressions for x̄, ȳ follow from equations (4.55),
(4.56). Similarly, if p(x, y, z, t;L) is the pressure field given above for the rectangular
aerofoil, the solution ph for any other two-dimensional aerofoil of cross-section h(x1),
0 < x1 < L, is given by

ph = −
∫ L

0

dh(l)

dl
p(x, y, z, t; l) dl. (6.1)

This work has been carried out with the support of the Defence Evaluation &
Research Agency, Farnborough.
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